
Unit 4 Test Study Guide	Name:
(Solving Quadratic Equations)	Date: Block:
opic 1: Complex Numbers	
implify each expresion below.	
1. √-324	2. 2√-147
3. (-4+7 <i>i</i>)+(-3-8 <i>i</i>)	4. (21+9 <i>i</i>)-(13-2 <i>i</i>)
5. (1+5 <i>i</i>)(4-2 <i>i</i>)	6. (7- <i>i</i>) ²
7. $\frac{8}{-12t}$	8. $\frac{3-6i}{4-3i}$
Simplify, then name all sets to which the valu 9. <i>i</i> ⁵⁹	e belongs. 10. (9+5i)(9-5i)
Use the complex numbers to write an exampl 11. Associative Property of Multiplication	e of each property. 12. Distributive Property

13. Name the additive identity of (-10 + 4 <i>i</i>)	14. Name the multiplicative inverse of 7 <i>i</i>
15. Name all sets that are closed under subtraction	on.

Topic 2: Solving Quadratics by Graphing

Topic 3: Solving Quadratics by Factoring

18. $x^2 - 11x + 18 = 0$	19. $2x^2 - 32x + 128 = 0$	
20. $8x^2 + 10x = 0$	21. $7x^2 - 19x - 6 = 0$	

Standard Form	Vertex Form (Identify Vertex & Axis of Symmetry)	Factored Form (Identify the Roots)
22.		(Identity the Roots)
$f(x) = x^2 + 16x + 63$		
23.		
	$f(x) = \left(x - \frac{1}{2}\right)^2 - \frac{25}{4}$	

Topic 4: Solving Quadratics by Square Roots

24. $16x^2 - 1 = 0$	25. $-3x^2 + 11 = 17$	
26. $(x+5)^2 = 4$	27. $(x-8)^2 - 7 = 25$	

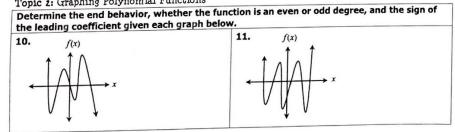
Topic 5: Solving Quadratics by Completing the Square

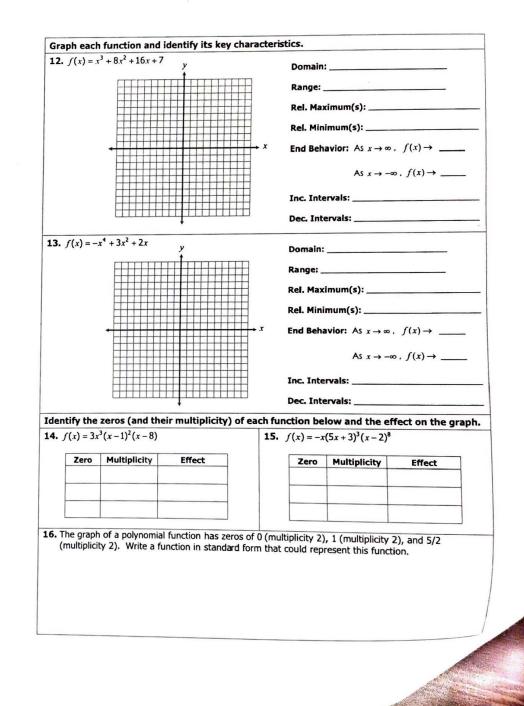
28. $x^2 - 8x - 10 = 0$	29. $-4x^2 - 48x - 20 = 0$

Topic 6: Solving Quadratics by the Quadratic Formula

30. $-x^2 + 3x - 21 = 0$	31. $10x^2 + 8x - 1 = 0$	
		/
		ALC: NOT

Topic 7: Discriminant/Choosing the Best Method	Topic 7:	Discriminant	/Choosing th	e Best Method	
--	----------	--------------	--------------	---------------	--


olve using the most appropria	ate method	Use	ermine the number and type of a	ous, me	
2. $-x^2 + 2x - 8 = 0$			33. $-2x^2 + 8 = x^2 - 28$		
		SR	33. $-2x + 6 = x - 26$		SR
		CS			CS
		QF			QF
	-	Qr		-	Ŷ
34. $-2x^2 - 5x - 4 = 0$		F	35. $4x^2 + 32x - 36 = 0$	0) F
		SR			SR
) CS			
		QF			Q
				`	


Manta C. Bastinski

by addi	ing the sam	ne amount, x,	g farm is 10 b to the length st hundredth	h and width.	ne farm woul What are the	d like to doul e dimensions	ble the current a of the new
fence i	nto the cou	rt. The heigh		h, and time t s			t over the 12-foot uation
heigh	nt, h, of the	laptop at time	e t seconds ca	that he thew i an be given by , find the dom	the equation	$h(t) = -16t^2$	
heigh Assur	nt, <i>l</i> i, of the ming the la _l	laptop at tim	e t seconds ca	an be given by	r the equation ain of the fun	<i>h</i> (<i>t</i>) = -16 <i>t</i> ² ction.	+ 28t + 17.
heigh Assur 39. The Balt	ht, <i>h</i> , of the ming the lay	laptop at tim ptop hits the s	e t seconds ca ground below	an be given by , find the dom	r the equation ain of the fun	$h(t) = -16t^2$ ction.	+ 28t + 17.
heigh Assur 39. The Balt	ht, <i>h</i> , of the ming the lay table below imore to Or	laptop at tim ptop hits the s	e t seconds ca ground below	an be given by , find the dom	r the equation ain of the fun	$h(t) = -16t^2$ ction.	+ 28 <i>t</i> + 17.

Unit 5 Test Study Guide (Polynomial Functions)		Date:	Block:
Copic 1: Classifying Poly	nomials & Polynomia	l Operations	-
Classify each polynomial	by degree and number	er of terms.	
1. $-2x^2 - 9$	2. $x^5 - 6x^3 - x$	-1	3. 4 <i>x</i> ³
Simplify each expression	. Final answers shoul		
4. $(-4m^2n)^4 \cdot \frac{1}{6}m^{-10}n^{-4}$		5. $(8a^2 - 6 - 8a)$)+(1-6 <i>a</i> -7 <i>a</i>)
6. $(6x - 7x^2 + 7) - (5x^2 + 2x)$	- 2x ³ - 1)	7. $(y+4)^3 - 2y($	(v-1)
8. $(3k-6)(k^2-k+7)$		9. $\frac{-8c^6d^4 + 56c^2}{8c^2}$	$\frac{d^2 - 24c^2d}{d}$

Topic 2: Graphing Polynomial Functions

Topic 3: Factoring Polynomials

Differences of Squares $a^2 - b^2 =$	Sum of Cubes $a^3 + b^3 =$	Differences of Cubes $a^3 - b^3 =$
Factor each polynomial below cor	npletely.	
17. 9 <i>x</i> ³ +21 <i>x</i> ²	18. 3n ⁴ - 147	
19. 64 <i>a</i> ³ -343 <i>b</i> ³	20. 648w+102	
21. 32c ⁵ d – 162cd ³	22. 216 <i>pq</i> – <i>p</i> ⁷	9
23. 2 <i>c</i> ⁵ – 2 <i>c</i> ³ – 60 <i>c</i>	24. 9y ⁴ – 7y ² -	-16
25. $n^3 + 2n^2 - 36n - 72$	26. $8x^3 - 10x^2$	+ 28 <i>x</i> – 35

Topic 4: Solving Polynomial Equations

-

27. $2x^4 - 48x^2 = 0$	28. $25x^3 = 64x$	
		1
		1
29. $108x^3 + 37 = 5$	30. $9x^5 - 72x^2 = 0$	
31. $x^4 + 19x^2 - 20 = 0$	32. $x^5 = 18x^3 - 81x$	
	32. x = 10x - 01x	

33. $3x^4 - 14x^2 = 5$	34. $2x^3 + 7x^2 - 16x - 56 = 0$	

Topic 5: Dividing Polynomials

35. $(12x^2 - 20x + 3) \div (2x - 3)$	36. $(n^2 - 9n + 17) \div (n - 2)$	
	*	
7. $(y^4 - 7y^3 - 2y + 18) \div (y - 7)$		
(y - iy - 2y + 10) + (y - i)		

restrictions in the domain. 38. $(f - g)(x)$	39. $(h \cdot g)(x)$
40. $\left(\frac{h}{f}\right)(x)$	41. $(g \circ h)(x)$
Use the same functions above, e 12. $(g + h)(-4)$	Evaluate each function. 43. $(h \circ f)(2)$

1

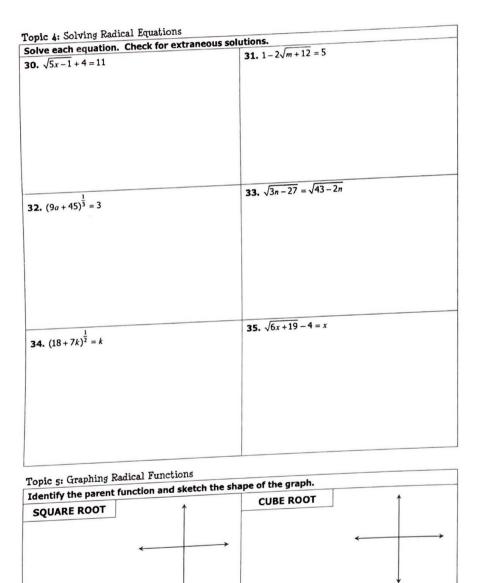
Topic 7: Regression
44. The population present in a bacteria culture over 5 days is given in the table below. Write a cubic function to represent the data.

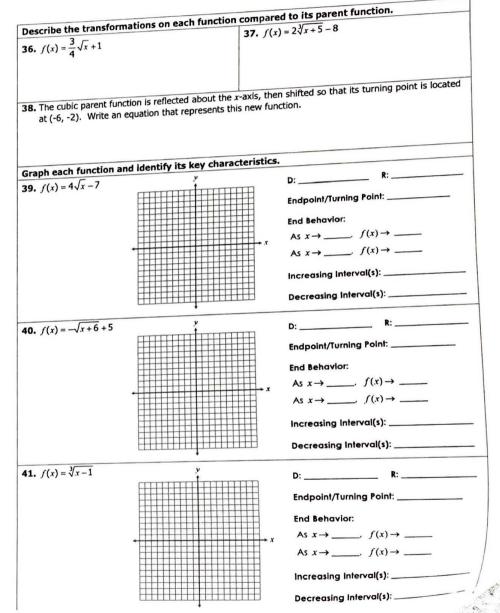
Time (days)	0	1	2	3	4	5
Population	28	135	219	332	520	834

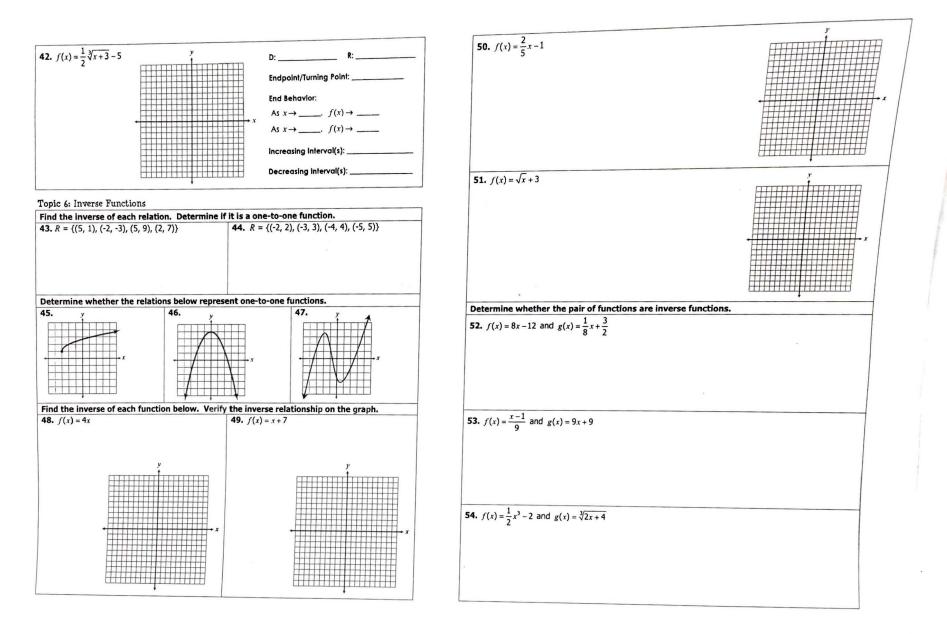
45. Use a **cubic function** to estimate the value of *y* when *x* is -8. How does the estimate change when a quartic function is used instead?

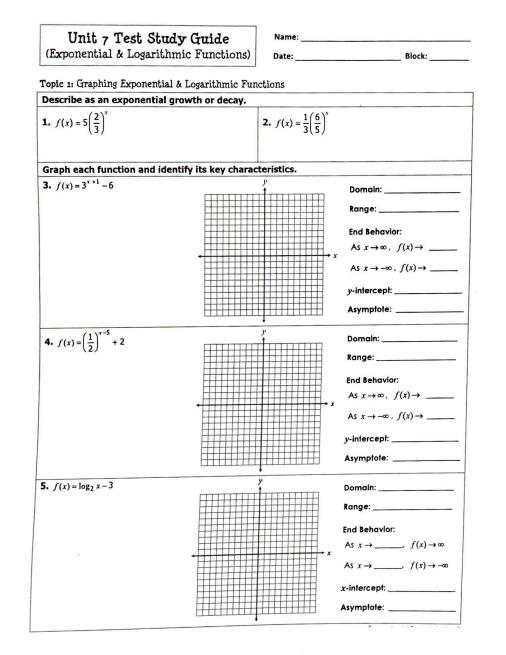
x	-4	0	4	8	12
y	975	128	-9	-160	-893

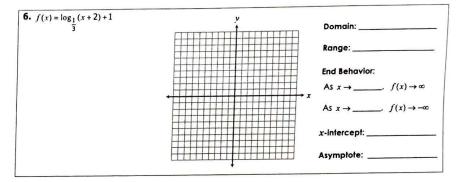
Unit 6 Test S (Radical F	Charles and the second second	Name: Date:	
Topic 1: Simplifying Ra	dicals		
Perfect Squares: Perfect Cubes: Perfect Fourths:			
1. $-2\sqrt{294m^{16}n^7}$	2. 5∛–80a ⁵	3. −3∜256	p¹¹q⁵


Topic 2: Operations with Radicals


Simplify.		
4. $-\sqrt{6} - 3\sqrt{45} + 2\sqrt{96}$	5. ∛24 - 2∜112 + 3∜7	6. $\sqrt[3]{-12x^4y} \cdot \sqrt[3]{4x^2y^2}$
7. √18(5−√2)−11√2	8. $(\sqrt{3} + \sqrt{6})(2\sqrt{3} - 5\sqrt{6})$	9. (√5 − 2) ²
10. $\frac{\sqrt[3]{324}}{\sqrt[3]{4}}$	11. $\frac{\sqrt{112a^{6}b^{12}}}{\sqrt{7a^{2}b^{3}}}$	12. $\frac{\sqrt[3]{7}}{\sqrt[3]{56}}$


13. $\frac{5\sqrt{6}}{\sqrt{15}}$	1.	4. $\sqrt{\frac{10m^3}{18m}}$		15. $\frac{\sqrt{5}-\sqrt{2}}{4\sqrt{2}}$	
16. $\frac{2}{5+3\sqrt{2}}$			17. $\frac{2+\sqrt{7}}{5-\sqrt{7}}$		


Topic 3: Rational Exponents


Rewrite in radical fo	orm. Simplify if possible.	
18. $16^{\frac{1}{4}}$	19. $a^{\frac{2}{3}}$	20. $(2y)^{\frac{5}{2}}$
Rewrite in exponent		
21. ∛17	22. $\sqrt[4]{(7x)^3}$	23. $\sqrt{12a^9}$
Simplify each expres	ssion. Give final answers in simp	lest radical form.
24. $x^{\frac{1}{8}} \cdot x^{\frac{5}{8}}$	25. $(81^8)^{\frac{1}{4}}$	26. $\frac{k^3}{k}$
27. √m ⁹ ⋅√m		
∠7. √m [°] ·√m	28. $\frac{2^3}{\sqrt{2^7}}$	$29. \frac{\sqrt{x^3} \cdot \sqrt{x^3}}{x}$

Topic 2: Exponential vs. Logarithmic Form

' .

7. $8^2 = 64$	8. $2^{x-4} = 32$	9. $10^{2x} = 54$	10. $e^6 = x - 2$
			c
Write in exponential f	form.		
11. log ₃ 27 = 3	12. $\log_x 7 = \frac{1}{2}$	13. log ₄ 90 = <i>x</i>	14. In <i>x</i> = 38

Topic 3: Evaluating Logarithms

15. log, 81	16. log ₈₁ 3	17. $\log_5 \frac{1}{25}$	18. log ₆ 1
19. log 63	20. log ₇ 95	21. log ₂ 78	22. In 42

$Product Rule \\ \log_b (m \cdot n) =$	Quotient Rule $\log_h\left(\frac{m}{n}\right) =$	Power Rule log, m" =
Condense each expression in	to a single logarithm.	
23. 3 · log 2 + log (<i>x</i> − 4)	24. $\frac{1}{2} \cdot \log_5 324 - \log_5 2$	25. $3 \cdot \ln 6 - \frac{3}{2} \cdot \ln 4$
Expand each expression.		
26. $\log_3(x^2y^5)^3$	27. $\ln\left(\frac{2}{a^3}\right)^4$	28. $\log_4 \sqrt{\rho^3 q^{10}}$
	×	

Topic 5: Solving Logarithmic Equations

30. $\ln(p^2 - p) = \ln(6p + 18)$	
32. 2 · log(y + 5) = log 20 - log 5	

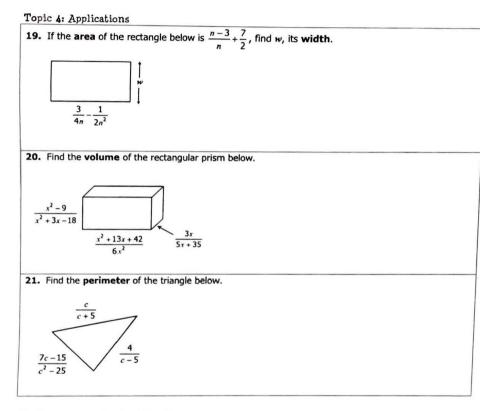
33. $\log_2(9m + 2) = 7$	34. 5 · In (2 <i>u</i> - 1) = 15	

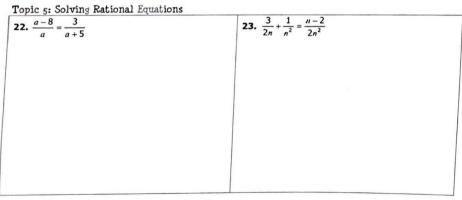
Topic 6: Solving Exponential Equations

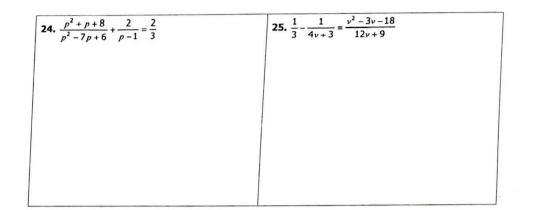
35. $64^{x+7} = 4^{5x-3}$	36. $9^{w-8} = \left(\frac{1}{27}\right)^{2w}$
37. 8 ⁿ⁻⁵ = 48	38. $2 \cdot 3^{4y} - 11 = 61$
39. $e^{a+1} = 65$	40. $-3 \cdot e^{2m-5} - 7 = -34$

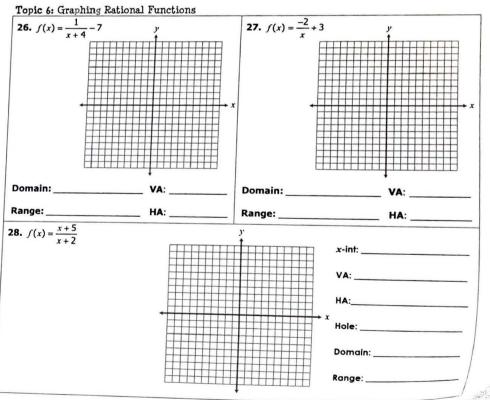
and a street of the street

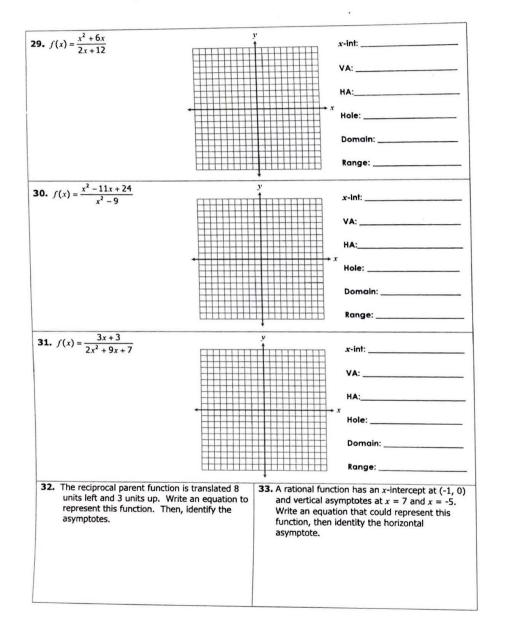
	Exponential Decay	Compound Interest
a = initial amount r = growth rate t = time	a = initial amount r = decay rate t = time (in years)	P = initial amount r = rate n = # of times compounded/year t = time (in years)
		n = # of times compounded/yea
 A baseball card that was valued function to model this situation, 	at \$200 in 1980 has increased in then find the value of the card in	value by 7% each year. Write a 2016.
 Miles invested \$2,400 into a retire Write a function to model this situ 	ement account that earns 1.8% in action, then find the balance of	nterest compounded bimonthly. ne account after 25 years.


÷


Topic 8: Regression


Compound Interest	45.	The tab model,	ble below : , write an	shows the va equation for	lue of a stock of the curve of be	over the course est fit, then est	e of five years. U imate the value of	sing an exponential of the stock in 2025.
		Year	Value (\$)				
		1998	400					
		1999	438					
P = initial amount		2000	480					
= # of times compounded/year		2001	525	-				
= time (in years)		2002	575	-				
3% each year. Write a		2002	3/3					
fter 15 years.	la	ogarith	nmic mod	el, write an o		e curve of best	ponding wind chi fit, then find the	Il factor. Using a approximate wind
		Wind S (mi/l		Wind Chill actor (*F)]			
		3		1				
		5		-3				
by 7% each year. Write a		14		-8				
		20		-11				
		27		-14				
	in 2	2020.		_	equation, then	i esumate the l	number of senior	s taking college classes
compounded bimonthly.		Year	Student	s				
ount after 25 years.		2004	18	_				
		2006 2008	24	-				
		2008	39 48	-				
		2012	48 64	-				
		2015	70					
her backyard. If the interest	mode	el would	a dest fit t	nis data: cut	er of used text bic, <u>quartic</u> , or er of books sol	exponential?	h year on an onl Use the model to	ine bookstore. Which o write a best-fit
uch will interest will she	Yea	ar	ooks Sol	-				
	200	8	1					
	200	9	6.2					
	201	0	9.7					
	201	1	12.1					
	201	2	13.3					


÷


Unit 8 Test Study Guid (Rational Functions)	Date: Block:	10. $\frac{m^2 - 7m - 18}{m^2 - 10m + 9} + \frac{6}{m - 1}$ 11. $\frac{r}{2r + 1} + \frac{12r - 6}{4r^2 - 1}$	
Topic 1: Simplifying Rational Expressions1. $\frac{12x^2 - 30x}{20x^3 - 50x^2}$ 2. $\frac{4a^2 - 3}{24 - 8}$	$\frac{6}{3}$ 3. $\frac{n^2 - 13n + 40}{3n^2 - 14n - 5}$	12. $\frac{a+4}{8a} + \frac{5}{24}$ 13. $\frac{2}{h+2} + \frac{5}{h+5}$	
Topic 2: Operations with Rational Expression 4. $\frac{6p^2 - 13p + 5}{2p^2 + 17p - 9} \cdot \frac{p^2 + 16p + 63}{4p + 28}$	ssions 5. $\frac{50-2w^2}{3w^2+9w-30} \cdot \frac{w^2+5w-14}{6w-30}$	$14. \ \frac{3x-1}{x-1} - \frac{x-1}{x-3} + \frac{x+1}{x^2 - 4x + 3}$	
6. $\frac{5y+5}{2} \div \frac{25y-20}{40y^2-32y}$	7. $\frac{2c^2 + 4c - 6}{4c^2 - 7c + 3} + \frac{16c^2 + 48c}{16c^2 - 9}$	Topic 3: Complex Fractions $ \begin{array}{c} 12m^{3} \\ 15. \frac{12m^{3}}{\frac{m^{2}+14m+45}{3m^{3}-6m^{2}}} \\ \frac{3m^{3}-6m^{2}}{m^{2}+7m-18} \end{array} $ 16. $\frac{8k+12}{9} \\ \frac{k}{3}+\frac{1}{2} \end{array} $	
8. $\frac{6x}{x^2 - 16} - \frac{x - 20}{x^2 - 16}$	9. $\frac{16}{3} - \frac{4k+56}{3k+15}$	17. $\frac{\frac{b}{2} - \frac{32}{b}}{1 + \frac{8}{b}}$ 18. $\frac{\frac{x}{x+1} + \frac{4}{x}}{\frac{4x+7}{3x+3} - \frac{1}{3}}$	

opic 7: Variation DIRECT VARIATION	JOINT VA	ARIATION	INVERSE VARIATION
Franslate into an equation to r	enresent the rela	ationship.	
34. "s varies jointly with <i>i</i> cubed a	nd v"	35. " <i>m</i> varies inve with <i>p</i> "	ersely with <i>n</i> squared and directly
Determine if the equation repre	sents a direct, joir	nt, or inverse varia	ation. Identify the constant.
36. $3y = x^2 z$	37. $\frac{1}{2}d = r$		$38. \ \frac{8}{x} = \frac{y}{6}$
Use the variation type to find t	the missing value	I	
39. <i>w</i> varies directly as <i>r</i> cubed an If <i>w</i> = 24 when <i>r</i> = 4 and <i>s</i> = <i>w</i> = 81 and <i>s</i> = 27.			ty with a and c and $b = 112$ and $c = 7$, find a when $b = 72$
41. The wind force F on a sail van	ies jointly as the are		
The force on a sale with area would be the force for a sail v	an area of 500 ft ² is	64.8 nounds when	the square of the wind speed w. the wind speed is 18 mph. What I of 35 mph.

Unit to Test Study Guide	Name:
(Sequences & Series)	Date: Block:
Topic 1: Sequences, Explicit & Recursive Form	ılas
1. What is a sequence?	
2. Describe the difference between recursive and ex	plicit formulas:
 Describe the difference between recursive and ex 	olicit formulas:
 Describe the difference between recursive and ex 	
Given the formula, write the first six terms of e 3. $a_1 = -1$; $a_* = 2a_{*-1} - 5$ (for $n \ge 2$)	ach sequence,

Topic 2: Expanding & Evaluating Series

Write each sequence as a series, then find S_{\bullet} .				
10. $a_1 = 2$, $a_1 = 3$; $a_n = a_{n-1} \cdot a_{n-2}$ (for $n \ge 3$)	11. $a_n = n^2 + 2n$			
xpand and evaluate each series.				
$2. \sum_{k=1}^{16} (k-5)^2$				
$\cdot \sum_{k=3}^{14} m^3 - 4m$				

Topic 3: Arithmetic vs. Geometric Sequences

	Definition
ARITHMETIC	
GEOMETRIC	
For each sequence: a) Determine b) Determine the common differer	if the sequence is arithmetic, geometric, or neither and ce (d) or common ratio (r).
14. {3, 12, 48, 192, 768,}	15. {16, 106, 1006, 10006, 100006,}
16. {2,-5,-12,-19,-26,}	17. $\left\{45, -15, 5, -\frac{5}{3}, \frac{5}{9}, \ldots\right\}$
8. {6, 8, 11, 15, 20,}	19. {-11, -8, -5, -2, 1,}
0. $\left\{-1125, -450, -180, -36, -\frac{36}{5}, \ldots\right\}$	21. {0, 1, 1, 2, 3, 5,}

Topic 4: Writing Arithmetic & Geometric Sequence Formulas

Arithmetic Sequence Formula:	Geometric Sequence Formula:
Write a formula for each arithmetic sequen	
22. $\{-13, -7, -1, 5,\}; a_{42}$	23. {34, 24, 14, 4,}; <i>a</i> ₃₀
$4. \left\{ -\frac{3}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{5}{8}, \cdots \right\}; a_{21}$	25. $\left\{4, \frac{5}{2}, 1, -\frac{1}{2}, -2,\right\}; a_{25}$

. ·...

rite a formula for the arithmetic seque 5. $a_{31} = -108$; $d = -3$; Find a_{1}	27. $a_{14} = 15; d = 9;$ Find a_4
3. $a_1 = -2$ and $a_{10} = 43$; Find d	29. $a_1 = 10$ and $a_{21} = 2$; Find a_{14}
. 10	
	equence, then find the indicated term.
0. {8, -16, 32, -64,}; <i>a</i> ₁₈	31. {6561, 2187,729, 243,}; <i>a</i> ₁₁
(128)	
32. $\left\{18, 24, 32, \frac{128}{3}, \ldots\right\}; a_{6}$	33. $\left\{-\frac{2}{5}, -2, -10, -50, \ldots\right\}; a_{s}$
Write a formula for the geometric se	equence and find the indicated value.
34. $a_5 = -10$ and $r = -\frac{1}{2}$; Find a_1	35. $a_1 = 2$ and $a_5 = 4802$; Find r
36. $a_3 = -18$ and $a_6 = 486$; Find a_1	37. $a_2 = 1500$ and $a_4 = 960$; Find a_6

Topic 5: Arithmetic & Geometric Series Sum of a Convergent Sum of a Geometric Series Sum of an Arithmetic Series Infinite Geometric Series Find the indicated sum for each series. **38.** $\{6+1+(-4)+(-9)+...\}; S_{22}$ **39.** $\{2+12+72+432+...\}; S_{15}$ **40.** $\left\{800 - 200 + 50 - \frac{25}{2} + \ldots\right\}; S_{a}$ **41.** $\{(-29) + (-27) + (-25) + (-23) + ...\}; S_{36}$ **42.** $\sum_{r=1}^{9} - 2 \cdot (-3)^{r-1}$ **43.** $\sum_{n=1}^{24} (4n-7)$ **44.** $\sum_{k=3}^{10} 64 \cdot \left(\frac{1}{2}\right)^{k-1}$ **45.** $\sum_{m=6}^{39} (2m-38)$ Determine if the series is convergent or divergent. Find the sum, if possible. **46.** $\left\{-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+\frac{3}{16}+...\right\}$ **47.** $\left\{24+6+\frac{3}{2}+\frac{3}{8}+...\right\}$

48.	{4+16+64	4 + 256 +}	49. {500 - 300 + 180 - 108 +}
50.	$\sum_{k=1}^{\infty} 9 \cdot \left(\frac{4}{5}\right)^k$	-1	51. $\sum_{r=1}^{n} 10 \cdot \left(-\frac{4}{3}\right)^{r-1}$
52.	∑ - 54 ($\left(\frac{1}{3}\right)^{s-1}$	53. $\sum_{i=5}^{\infty} -\frac{9}{2} \cdot \left(-\frac{1}{2}\right)^{i-1}$
Гор	ic 6: Applic	cations	
54.	has three	fewer bricks than the	42 bricks on the bottom row and 9 bricks on the top row. Each row row below it. Write a formula to represent the number of bricks on number of bricks on the 7^{th} row.
	has three each row, A compan after that.	fewer bricks than the , then determine the r	row below it. Write a formula to represent the number of bricks on
55.	A compan after that the salary The table continues	fewer bricks than the then determine the r y is offering a job wit Write a formula to r after 30 years.	row below it. Write a formula to represent the number of bricks on number of bricks on the 7 th row.
55.	has three each row, A compan after that the salary The table	fewer bricks than the then determine the r y is offering a job wit Write a formula to r after 30 years.	row below it. Write a formula to represent the number of bricks on number of bricks on the 7 th row. h a salary of \$48,000 for the first year, then a raise of 2% each year epresent the salary after each year of employment, then determine seats in the first three rows of the concert hall. This pattern
